Diagnostic Biomarkers for Diabetes: A Review

Sudhanshu Sahu

Department of Pharmaceutical Sciences, CSJM University, Kanpur, (U.P.), India.

Surya Pratap Gond

Department of Pharmaceutical Sciences, CSJM University, Kanpur, (U.P.), India.

Archan Gupta

Department of Pharmaceutical Sciences, CSJM University, Kanpur, (U.P.), India.

Ajay Kumar Gupta

Department of Pharmaceutical Sciences, CSJM University, Kanpur, (U.P.), India.

Anju Singh *

Department of Pharmaceutical Sciences, CSJM University, Kanpur, (U.P.), India.

*Author to whom correspondence should be addressed.


Introduction: In the year 2021, about 537 million adults between the age group of 20-79 years are living with diabetes. The expected number of individuals living with diabetes will be 643 million by 2030 and 783 million by 2045 [1]. The diagnosis of diabetes and prediabetes with the help of various biomarkers, at right time with accuracy can help in improving the scenario in which the diagnostic biomarkers play an important role. Prediabetes is an intermediate condition of hyperglycemia characterized by impaired fasting glucose levels and impaired glucose tolerance [2]. Biomarkers can be defined as “biological molecules that represent health or disease state” [3].

Discussion: The conventional diagnostic biomarkers of diabetes include fasting and postprandial blood glucose levels, HbA1c, fructosamine, glycated albumin, etc. [4]. These biomarkers have limitations like moderate sensitivity and specificity. As diabetes is mostly associated with other comorbidities, these biomarkers become inaccurate in several clinical conditions [5,6]. Recently, LAMA2, MLL4, and PLXDC2 are found to be novel and reliable serum protein markers for pre-diabetic diagnosis in humans [7].

Conclusion: Therefore, there is a consistent exploration of more accurate and novel diagnostic biomarkers. The exploratory study of novel diagnostic biomarkers can help in the accurate diagnosis of prediabetes as well as diabetes with other comorbidities. Another approach for better diagnosis is to combine several biomarkers. In the future, more reliable diagnostic biomarkers and their combinations can be optimized for the diagnosis of prediabetes as well as diabetes.

Keywords: Diabetes, biomarkers, diagnosis, HbA1C, OGTT, inflammatory biomarkers, noval biomarkers

How to Cite

Sahu, S., Gond, S. P., Gupta, A., Gupta, A. K., & Singh, A. (2022). Diagnostic Biomarkers for Diabetes: A Review. Asian Journal of Medical Principles and Clinical Practice, 5(2), 352–362. Retrieved from https://journalajmpcp.com/index.php/AJMPCP/article/view/146


Download data is not yet available.


International Diabetes Federation. Belgium. IDF diabetes atlas. 10th ed, Brussels; 2021.


World Health Organization, World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: World Health Organization. 2006;1-50.

Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89-95.

DOI: 10.1067/mcp.2001.113989

Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ, et al. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes. 2017;10:345-61.

DOI: 10.2147/DMSO.S100074

Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med. 2014;29(2):388-94.

DOI: 10.1007/s11606-013-2595-x

Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. July 3 2016;11:95-104.

DOI: 10.4137/BMI.S38440

Yang M-T, Chang WH, Kuo TF, Shen MY, Yang CW, Tien YJ, et al. Identification of novel biomarkers for pre-diabetic diagnosis using a combinational approach. Front Endocrinol. April 28 2021;12:641336.

DOI: 10.3389/fendo.2021.641336

Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2009;10;Suppl 12:3-12.

Association AD. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. In: Diabetes care. 2020;44(Supplement_1):S15-S33.

Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):481-97..

Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850-67.

CDC. Prediabetes – your chance to prevent Type 2 diabetes; 2022 [cited Apr 11 2022]. Available:https://www.cdc.gov/diabetes/basics/prediabetes.html#:~:text=Prediabetes%20is%20a%20serious%20health,t%20know%20they%20have%20it

Bookchin RM, Gallop PM. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968;32(1):86-93. doi

Pfister R, Sharp SJ, Luben R, Khaw KT, Wareham NJ. No evidence of an increased mortality risk associated with low levels of glycated hemoglobin in a nondiabetic UK population. Diabetologia. 2011;54(8):2025-32.

White NH, Sun W, Cleary PA, Tamborlane WV, Danis RP, Hainsworth DP, et al. Effect of prior intensive therapy in type 1 diabetes on the 10-year progression of retinopathy in the DCCT/EDIC: comparison of adults and adolescents. Diabetes. 2010;59(5):1244-53.

Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-86.

Bonora E, Tuomilehto J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care. 2011;34;Suppl 2:S184-90.

Olson DE, Rhee MK, Herrick K, Ziemer DC, Twombly JG, Phillips LS. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care. 2010;33(10):2184-9.

Lorenzo C, Wagenknecht LE, Hanley AJ, Rewers MJ, Karter AJ, Haffner SM. A1C between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33(9):2104-9.

Zhou X, Pang Z, Gao W, Wang S, Zhang L, Ning F, et al. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao, China. Diabetes Care. 2010;33(3):545-50.

Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med. 2014;29(2):388-94.

Lee JE. Alternative biomarkers for assessing glycemic control in diabetes: fructosamine, glycated albumin, and 1,5-anhydroglucitol. Ann Pediatr Endocrinol Metab. 2015;20(2):74-8.

Malmström H, Walldius G, Grill V, Jungner I, Gudbjörnsdottir S, Hammar N. Fructosamine is a useful indicator of hyperglycemia and glucose control in clinical and epidemiological studies—cross-sectional and longitudinal experience from the AMORIS cohort. PLOS ONE. 2014;9(10):e111463.

Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. Clin Chem. 2001;47(2):153-63.

Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2011;57(6):e1-e47.

Ribeiro RT, Macedo MP, Raposo JF. HbA1c, fructosamine, and glycated albumin in the detection of dysglycemia conditions. Curr Diabetes Rev. 2016;12(1):14-9.

Austin GE, Wheaton R, Nanes MS, Rubin J, Mullins RE. Usefulness of fructosamine for monitoring outpatients with diabetes. Am J Med Sci. 1999;318(5):316-23.

Weerasekera DS, Peiris H. The value of serum fructosamine in comparison with oral glucose tolerance test (OGTT) as a screening test for detection of gestational diabetes mellitus. J Obstet Gynaecol. 2000;20(2):136-8.

Schleicher ED, Olgemöller B, Wiedenmann E, Gerbitz KD. Specific glycation of albumin depends on its half-life. Clin Chem. 1993;39(4):625-8.

Selvin E, Francis LM, Ballantyne CM, Hoogeveen RC, Coresh J, Brancati FL, et al. Nontraditional markers of glycemia: associations with microvascular conditions. Diabetes Care. 2011;34(4):960-7.

Rodríguez-Segade S, Rodríguez J, Camiña F. Corrected fructosamine improves both correlation with HbA1c and diagnostic performance. Clin Biochem. 2017;50(3):110-5.

Chan CL, Pyle L, Kelsey M, Newnes L, Zeitler PS, Nadeau KJ. Screening for type 2 diabetes and prediabetes in obese youth: evaluating alternate markers of glycemia – 1,5-anhydroglucitol, fructosamine, and glycated albumin. Pediatr Diabetes. 2016;17(3):206-11.

Malkan UY, Gunes G, Corakci A. Rational diagnoses of diabetes: the comparison of 1,5-anhydroglucitol with other glycemic markers. Springerplus. 2015;4:587.

Sumner AE, Duong MT, Aldana PC, Ricks M, Tulloch-Reid MK, Lozier JN, et al. A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America Study. Diabetes Care. 2016;39(2):271-7.

Danese E, Montagnana M, Nouvenne A, Lippi G. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes. J Diabetes Sci Technol. 2015;9(2):169-76.

Selvin E, Rawlings AM, Grams M, Klein R, Sharrett AR, Steffes M, et al. Prognostic utility of fructosamine and glycated albumin for incident diabetes and microvascular complications. Lancet Diabetes Endocrinol. 2014;2(4):279-88.

Wu WC, Ma WY, Wei JN, Yu TY, Lin MS, Shih SR, et al. Serum glycated albumin to guide the diagnosis of diabetes mellitus. PLOS ONE. 2016;11(1):e0146780.

Furusyo N, Koga T, Ai M, Otokozawa S, Kohzuma T, Ikezaki H, et al. Utility of glycated albumin for the diagnosis of diabetes mellitus in a Japanese population study: results from the Kyushu and Okinawa Population Study (KOPS). Diabetologia. 2011;54(12):3028-36.

Selvin E, Rawlings AM, Lutsey PL, Maruthur N, Pankow JS, Steffes M, et al. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death. Circulation. 2015;132(4):269-77.

Shima K, Abe F, Chikakiyo H, Ito N. The relative value of glycated albumin, hemoglobin A1c, and fructosamine when screening for diabetes mellitus. Diabetes Res Clin Pract. 1989;7(4):243-50.

Okada T, Nakao T, Matsumoto H, Yamanaka T, Nagaoka Y, Tamekuni T. Influence of age and nutritional status on glycated albumin values in hemodialysis patients. Intern Med. 2009;48(17):1495-9.

Tatemoto K, Efendić S, Mutt V, Makk G, Feistner GJ, Barchas JD. PST, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986;324(6096):476-8.

Helle KB, Angeletti RH. Chromogranin A: a multipurpose prohormone? Acta Physiol Scand. 1994 September;152(1):1-10.

Sánchez-Margalet V, Lucas M, Goberna R. PST: further evidence for its consideration as a regulatory peptide. J Mol Endocrinol. 1996;16(1):1-8.

Tabák AG, Carstensen M, Witte DR, Brunner EJ, Shipley MJ, Jokela M, et al. Adiponectin trajectories before type 2 diabetes diagnosis: Whitehall II study. Diabetes Care. 2012;35(12):2540-7.

Jiang Y, Owei I, Wan J, Ebenibo S, Dagogo-Jack S. Adiponectin levels predict prediabetes risk: the Pathobiology of Prediabetes in A Biracial Cohort (POP-ABC) study. BMJ Open Diabetes Res Care. 2016;4(1):e000194.

Stefan N, Sun Q, Fritsche A, Machann J, Schick F, Gerst F, et al. Impact of the adipokine adiponectin and the hepatokine fetuin-A on the development of type 2 diabetes: prospective cohort- and cross-sectional phenotyping studies. PLOS ONE. 2014;9(3):e92238.

Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18(8):1279-85.

Sun Q, Jiménez MC, Townsend MK, Rimm EB, Manson JE, Albert CM, et al. Plasma levels of fetuin-A and risk of coronary heart disease in US women: the Nurses’ Health Study. J Am Heart Assoc. 2014;3(3):e000939.

Weikert C, Stefan N, Schulze MB, Pischon T, Berger K, Joost HG, et al. Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation. 2008;118(24):2555-62.

Aroner SA, St-Jules DE, Mukamal KJ, Katz R, Shlipak MG, Criqui MH, et al. Fetuin-A, glycemic status, and risk of cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2016;248:224-9.

Al-Kafaji G, Al-Mahroos G, Alsayed NA, Hasan ZA, Nawaz S, Bakhiet M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol Med Rep. 2015;12(5):7485-90.

Párrizas M, Brugnara L, Esteban Y, González-Franquesa A, Canivell S, Murillo S, et al. Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J Clin Endocrinol Metab. 2015;100(3):E407-15.

Yang Z, Chen H, Si H, Li X, Ding X, Sheng Q, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol. 2014;51(5):823-31.

Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, et al. Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol. 2011;13(8):958-65.

Zelber-Sagi S, Lotan R, Shibolet O, Webb M, Buch A, Nitzan-Kaluski D, et al. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013; 33(9):1406-12.

Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1): 61-9.

Liu Y, Gao G, Yang C, Zhou K, Shen B, Liang H, et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci. 2014;15(6): 10567-77.

Nehring SM, Goyal A, Patel BC. C reactive protein. StatPearls [Internet]. Updated 2022 July 18; 2022

Kato K, Otsuka T, Saiki Y, Kobayashi N, Nakamura T, Kon Y, et al. Association between elevated C-reactive protein levels and prediabetes in adults, particularly impaired glucose tolerance. Can J Diabetes. 2019;43(1):40-45.e2.

DOI: 10.1016/j.jcjd.2018.03.007

Treszl A, Szereday L, Doria A, King GL, Orban T. Elevated C-reactive protein levels do not correspond to autoimmunity in Type 1 diabetes. Diabetes Care. November 1 2004;27(11):2769-70.

Tanaka T, Kishimoto T. Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases. Int J Biol Sci. 2012;8(9):1227-36.

Kreiner FF, Kraaijenhof JM, von Herrath M, Hovingh GKK, von Scholten BJ. Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: mechanisms and therapeutic perspectives. Expert Rev Clin Immunol. 2022;18(4):377-89.

Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27-55.

Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517-26.