Investigating the Level of Awareness on Transmission and use of Protective Devices against COVID – 19 among Non–clinical Staff of National Eye Center, Kaduna, Nigeria

Abubakar Ndaliman Salihu

School of Post Basic Ophthalmic Nursing, National Eye Center Kaduna, Nigeria.

Musa Danjuma *

Department of Community Ophthalmology, Research and Data Management Unit, National Eye Center Kaduna, Nigeria.

Abubakar Rahimat

School of Post Basic Ophthalmic Nursing, National Eye Center Kaduna, Nigeria.

Umar Hajara

School of Post Basic Ophthalmic Nursing, National Eye Center Kaduna, Nigeria.

Kode Sunday

School of Post Basic Ophthalmic Nursing, National Eye Center Kaduna, Nigeria.

M. B. Alhassan

Department of Vitreoretinal, National Eye Center Kaduna, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

A study on awareness of non-clinical staff on the use of protective devices for prevention of covid-19 transmission in NEC Kaduna. A non-experimental design used. Out of the targeted 176 respondents the study sampled 146 comprises of; 10 Gardeners, 12  Drivers, 66 Attendants and 80 respondents. Using a multi-stage sampling technique of stratified convenient and simple random sampling. The instrument used an adapted (W.H.O) Covid-19 awareness guideline. Findings revealed that; the whole respondents absolutely agreed that they have heard about corona virus (COVID-19) before with 146 (100%). On the respondent’s sources of information Majority 80 (54.8%) of the respondents got their information about COVID-19 through radio and television news, furthermore; findings also revealed that 79 (54.1%) respondents opined that (COVID-19) is viral disease, Majority;109 (74.7%) of the respondents stated that Corona Virus (COVID-19) was discovered from Wuhan China. Majority 26 (17.8%) stated that Corona Virus (COVID-19) spread via touching, 41 (28.1%) stated that (COVID-19) spread via coughing, 45 (30.8%) stated via sneezing, majority 78 (53.4%) stated that (COVID-19) is airborne disease; Majority 77 (52.7%) stated sore throat is a symptom of (COVID-19), Majority 66 (45.3%) stated wearing face mask as the protocol against (COVID-19), Majority 111 (76.0%) stated that hand washing frequently is easy. Majority 59 (40.4%) of the respondents that they disagreed that traditional medicine cannot cure Coronavirus (COVID-19). Majority; 99 (67.8%) stated that government is doing enough to stop the global pandemic in Nigeria, Majority 102 (69.9%) stated that they can accept  COVID-19 vaccine conclusively respondents are aware of the Sources of information on the Use of Protective Devices against Transmission of COVID-19 in NEC via Radio and Television news. Hence the researcher recommended Community-based health campaigns are necessary to hold optimistic attitudes and practice appropriate intervention measures devoid of misconceptions.

Keywords: Awareness/knowledge, attitude, practice, public health, COVID-19, Kaduna, Nigeria


How to Cite

Salihu, Abubakar Ndaliman, Musa Danjuma, Abubakar Rahimat, Umar Hajara, Kode Sunday, and M. B. Alhassan. 2023. “Investigating the Level of Awareness on Transmission and Use of Protective Devices Against COVID – 19 Among Non–clinical Staff of National Eye Center, Kaduna, Nigeria”. Asian Journal of Medical Principles and Clinical Practice 6 (2):76-95. https://journalajmpcp.com/index.php/AJMPCP/article/view/164.


References

Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12: 135.

Virological.org. Novel Coronavirus Genome; 2019. Available: http://virological.org/t/issues-with-sars-cov-2-sequencing-data/473 .

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382: 1199–1207. DOI: 10.1056/NEJMoa2001316.

Nwagbara UI, Osuala EC, Chireshe R, Babatunde GB, Okeke NO, Opara N, HlongwanaMapping evidence on factors contributing to maternal and child mortality in Sub-Saharan Africa: A scoping review protocol. PLoS One. 2022:17(8):e0277335.

Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic. Lancet. 2020;395:931–4. DOI: 10.1016/S0140-6736(20)30567-5

Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, Trilling M, Lu M, Dittmer U, Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV.J Med Virol.2020;92:491–494. DOI: 10.1002/jmv.25709

Global Initiative on Sharing All Influenza Data. 27,000 Viral Genomic Sequences of hCoV-19 Shared With Unprecedented Speed ViaGISAID; 2020. Available: https://www.gisaid.org/

Chen Y, Liu Q, Guo D. Coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 2020; 92(4):418–423. DOI: 10.1002/jmv.25681

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol. J. 2019;16(69):1–22. DOI: 10.1186/s12985-019-1182-0.

Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int. Forum Allergy Rhinol. 2020:10:806-813. DOI: 10.1002/alr.22579.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020;94(7) DOI: 10.1128/JVI.00127-20. e00127-20.

Hindson J. COVID-19: faecal–oral transmission? Nat. Rev. Gastroenterol. Hepatol. 2020;17:259. DOI: 10.1038/s41575-020-0295-7.

Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med. 2020;8:e11–e12. DOI: 10.1016/S2213-2600(20)30071-0.

Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res. 2014;59(1–3):118–128. DOI: 10.1007/s12026-014-8534-z

Paderno A, Schreiber A, Grammatica A, Raffetti E, Tomasoni M, Gualtieri T, Taboni S, Zorzi S, Lombardi D, Deganello A, Redaelli De Zinis LO, Maroldi R, Mattavelli D. Smell and taste alterations in Covid-19: a cross-sectional analysis of different cohorts. Int. Forum Allergy Rhinol. 2020: 10(8):955-962. DOI: 10.1002/alr.22610

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 2020;94:91–95.

DOI: 10.1016/j.ijid.2020.03.017

Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr. Opin. Immunol. 2019;56:67–75.

Syedbasha M, Egli A. Interferon lambda: modulating immunity in infectious diseases. Front. Immunol. 2017;8:119. DOI: 10.3389/fimmu.2017.00119

Galani I.E., Triantafyllia V., Eleminiadou E.E., Koltsida O., Stavropoulos A., Manioudaki M., Thanos D., Doyle S.E., Kotenko S.V., Thanopoulou K. Interferon-lambda mediates nonredundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity. 2017;46:875–890. e6.

Kong W, Li Y, Peng M, Kong D, Yang X, Wang L, Liu M. SARS-CoV-2 detection in patients with influenza-like illness. Nat. Microbiol. 2020;5:675–678. DOI: 10.1038/s41564-020-0713-1.

Kanne J.P. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology. 2020;295(1):16-17 DOI: 10.1148/radiol.2020200241.

Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L., Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 46(6):1099-1102 doi: 10.1007/s00134-020-06033-2.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271–280.e8. DOI: 10.1016/j.cell.2020.02.052.

Shirato K., Kawase M., Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomalcathepsins for cell entry. Virology. 2018;517:9–15.

De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14(8):523– 534.

CDC. (2020). Novel coronavirus, Wuhan, China. Retrieved April 4, 2020, from https://www.cdc.gov/coronavirus/2019-nCoV/summary.html.Center for Disease Control; 2020. Protect Youself.https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html [Google Scholar]

Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58–74.

Baez-Santos YM, St. John SE, Mesecar AD. The SARS coronavirus papain-like protease: structure, function, and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38. [PMC free article] [PubMed] [Google Scholar]

Sakai Y, Kawachi K, Terada Y, Omori H, Matsura Y, Kamitani W. Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology. 2017;510: 165–174.

Tomar S, Johnston ML, St. John SE, Osswald HL, Nyalapatla PR, Paul LN, Ghosh AK, Denison MR, Mesecar AD. Ligand induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro) implications for nsp5 Regulation and the Development of Antivirals.J. Biol. Chem. 2015;290: 19403–19422.

Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 2014; 10:1426–1441.

TeVelthuis AJ, van de Worm SH, Snijder E. The SARScoronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012;40:1737–1747.

Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. U. S. A. 2015; 112:9436–9441.

Wang ., Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Guo D. Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J. Virol. 2015;89:8416–8427.

Subissi L. Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, Snijder EJ, Canard B, Imbert I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E3900–E3909.

Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 2004;78:5619–5632. [PMC free article]

Case JB, Ashbrook AW, Dermody TS, Denison MR. Mutagenesis of S-adenosyl-l-methionine-binding residues in coronavirus nsp14 N7-methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity. J. Virol. 2016;90:7248–7256.

Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao C.C. RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J. Mol. Biol. 2006; 361:243–256.

Hackbart M, Deng X, Baker S. C Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc. Natl. Acad. Sci. U. S. A. 2020;117:8094–8103.

Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B. Crystal structure and functional analysis of the sars-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoSPathog. 2011;7(5): e1002059.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11(1): 1620. DOI: 10.1038/s41467-020-15562-9

Walls AC, Park YP, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;180:281–292. DOI: 10.1016/j.cell.2020.02.058

Calligari P, Bobone S, Ricci G, Bocedi A. Molecular investigation of SARS-CoV-2 proteins and their interactions with antiviral drugs. Viruses. 2020;12:445.

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104:246–51. DOI: 10.1016/j.jhin.2020.01.022

COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention . Coronavirus disease-19: summary of 2,370 contact investigations of the first 30 cases in the Republic of Korea. Osong Public Health Res Perspect. 2020;11(02):81–84.

WHO. Middle East respiratory syndrome coronavirus (MERS-CoV); 2019.

Available: https://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndromecoronavirus-(mers-cov)