Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review

Main Article Content

Babawande A. Origbemisoye
Sekinat O. Bamidele


Coronavirus disease (COVID-19) has swept across the globe, affecting over 179 countries, with about 650,805 thousand deaths globally and over 16,341,920 million reported cases in the world. Hence, the need for novel drugs and different approaches for high quality treatment of the novel coronavirus may be a necessity. Since, the commencement of the coronavirus spread, significant efforts have been made to forestall and cure the virus by World Health Organization (WHO). However, no particular treatment has been certified, although, therapeutic methods have been outlined but, these therapeutic approaches have different drawbacks and lack the specified performance for the treatment of the new coronavirus disease. Thus, in response to these therapeutic drawbacks, this review helps to suggest possible immunomodulatory foods and plant species which could be used as anti-SARS-Cov2 therapy to forestall infection and strengthen immunity of the masses against SARS-CoV-2 and in COVID-19 patients.

Coronavirus, SARS-CoV-2, immunomodulatory foods, functional plants, antiviral compounds.

Article Details

How to Cite
Origbemisoye, B. A., & Bamidele, S. O. (2020). Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review. Asian Journal of Medical Principles and Clinical Practice, 3(4), 15-26. Retrieved from
Review Article


Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. Review of bats and SARS. Emergency Infection District. 2016;12: 1834–1840.

Ge XY, Li J, Yang X, Chmura A, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–538.

Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol. Sin. 2016;31:3–11.

Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 2014;101:45–56.

Cui J, Li F, Daszak P. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Genet. 2018;17:181–192.

World Health Organization (WHO). Coronavirus disease; situation report. 2020;189. Available: 2019/situation-reports

Zhou P, Yang XL, Wang XGW, Hu B, Zhang L, Zhang W, Si HR. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv; 2020.

Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo JL, Ye CJ, Zhu SY, Zhong NS. Clinical characteristics of Coronavirus disease 2019 in China; 2020.

Pung R. Investigation of three clusters of COVID-19 in Singapore: Implications for surveillance and response measures. 2020;395:1039–1046.

Lauer SA, Grantz KH, Qifang BI, Forrest K, Zheng Q, Meredith HR, Andrew S, Nicholas G, Lessler J. The incubation period of Coronavirus disease 2019 (COVID-19) from publicly reported confirmed dases; estimation and application. Ann. Intern. Med; 2020.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China, of Novel Coronavirus infected pneumonia. Journal of Medicine. 2020;382:1199–1207.

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunologic features of severe and moderate; 2020.

Phan LT, Huong V, Quang C, Thinh V, Hieu T, Hung Q, Thuc T, Thang M, Quang D. Pham. Importation and human- to- human transmission of a novel coronavirus in Vietnam. Journal of. Medicine. 2020;382:872–874.

Hung C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng X, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel Coronavirus pneumonia in Wuhan, China: A descriptive study. 2020;395:507–513.

Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Cheng CZ, Wang L, Peng L, Chen L, Qin Y, Zhao D, Tan S, Yin L, Xu J, Zhou C, Jiang C, Liu L. Clinical and biochemical indexes from 2019 nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;63:364-374.

Peiris JS, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, Law KI, Tang BSF, Hon TYW, Chan CS, Chan KH, Ng JSC, Zheng BJ, Ng WL, Lai RWM, Guan Y, Yuen KY. Clinical progression and viral load in a community outbreak of coronavirus associated SARS pneumonia: A prospective study. 2003;361:1767–1772.

Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS- CoV-2 in clinical samples. 2020;3099-30113.

Kim JY, Ko JH, Kim Y, Kim YJ, Kim JM, Chung YS, Kim HM, Myung-Han G, Kimand SO, Chin BS. Viral load kinetics of SARS- CoV-2 infection in first two patients in Korea. Journal of Korean Medicinal Science. 2020;35-86.

Zou L. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 2020;382:1177–1179.

Taneja V. Sex hormones determine immune response. Frontal Immunomodulatory. 2020;9:19-31.

Nigeria Centre for Disease Control (NCDC). An update of COVID-19 outbreak in Nigeria; An update of COVID-19 outbreak in Nigeria for Week 30; 2020. Available: 19%20outbreak%20in%20Nigeria

Dinesh DC, Tamilarasan S, Rajaram K, Bouřa D. Antiviral drug targets of single stranded RNA viruses causing chronic human diseases. Current Drug Targets. 2020;21(2):105-124.

Dong S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics. 2020;14(1):58-60.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. 2020;7798:265-269.

Xu Xintian, Ping Chen, Jingfang Wang, Jiannan Feng, Hui Zhou, Xuan Li, Wu Zhong, Pei Hao. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Science. 2020;3:457-460.

Saul AW. Nutritional treatment of coronavirus. Orthomol Med News Ser. 2020.

Grant WB, Lahore H, McDonnell SL. Evidence that vitamin d supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988.

Tan BKH, Vanitha J. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: A review. Curr Med Chem. 2004;11:1423-1430.

Saldon AE, Lamson DW. Immune-modifying and antimicrobial effects of eucalyptus oil and simple inhalation devices. Alternative Medicinal Review. 2010;15(1):33-42.

Luo H, Tang QL, Shang YX. Can Chinese medicine be used for prevention of Coronavirus Disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integrated Medicine. 2020;26(4):243-250.

Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARSCoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Analysis; 2020.

Mohammadi N, Shaghaghi N. Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis; 2020.

Kayaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Ranst MV. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Research. 2007;75(3):179-187.

Kumaki Y, Wanderseea MK, Smitha AJ, Zhoub Y, Simmons G, Nelsona NM, Baileya KW, Vest ZG, Joseph KK, Chane PKS, Smeea DF, Barnarda DL. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Research. 2011;90(1):22-32.

Guo JM, Weng XC, Wu H, Li Q, Bi KS. Antioxidants from a Chinese medicinal herb Psoralea corylifolia L. Food Chemistry. 2005;91:287–92.

Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Nguyen TTH, Park JS, Chang JS, Park KH, Rho MC, Lee WS. Biflavonoids from Torreya nucifera displaying SARS‐CoV 3CL(pro) inhibition. Bioorgan Medical Chemistry. 2010;18: 7940‐7947.

Nguyen TTH, Woo HJ, Kang HK, Nguyen VD, Kim YM, Kim DW, Ahn SA, Xia Y, Kim D. Flavonoid mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters. 2012;5:831-838.

Massi A, Bortolini O, Ragno D, Bernardi T, Sacchetti G, Tacchini M, De Risi C. Research progress in the modification of quercetin leading to anticancer agents (ineng). Molecules. 2017;8:12-70.

Bailly C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine. 2019;62:152956.

Chen F, Chan KH, Jiang Y, Kao, Lu HT, Fan KW, Cheng VCC, Lee TSW, Guan Y, Peiris JSM. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology. 2004;31(1):69-75.

Hoever G, Lidia BL, Michaelis M, Kondratenko R, Baltina L, Genrich A, Tolstikov, Hans W, Cinatl J. Antiviral activity of glycyrrhizic acid derivatives against SARS coronavirus. Journal of Medicinal Chemistry. 2005;48(4):1256-1259.

Yeh CF, Wang KC, Chiang LC, Shieh DE, Yen MH, Chang JS. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology. 2013;2:466-473.

Park JY, Jeong HJ, Kim JH, Kim YM, Park SJ, Kim DKH, Park KH, Lee W, Ryu YB. Biol. Pharm. Bull. 2012;35:2036–2042.

Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020;1:145-151.

Kuo PL, Lin TC, Lin CC. The antiproliferative activity of aloe-emodin is through P53 dependent and P21 apoptotic pathway in human hepatoma cell lines. Life Sciences. 2002;71:1879-1892.

Keivan Z, Moloud AZ, Kohzad S, Zahra R. Antiviral activity of Aloe vera against herpes simplex virus type 2: An in vitro study. African Journal of Biotechnology. 2007;6(15):1770-1773.

Zandi K, Zadeh MA, Sartavi K, Rastian Z. Antiviral activity of Aloe vera against herpes simplex virus type 2: An in vitro study. Afr J Biotechnol. 2007;6:1770-1773.

Morin E. Aloe vera (L.) Burm. f.: Aspects pharmacologiques et cliniques. Thèse de doctoratenpharmacie, Faculté de Pharmacie, Université de Nantes. 2008;224.

Rezazadeh F, Moshaverinia M, Motamedifar M, Alyaseri M. Assessment of anti HSV 1 activity of Aloe vera gel extract: an in vitro study. J Dent Shiraz University of Medical Science. 2016;17:49-54.

Wang Y, Zhaorui C, Jing O, Haiyan W, Renquan Y, Yangong C, Jianguo Q, Jianwei W, Tao H. Profiles of IgG antibodies to nucleocapsid and spike proteins of the SARS associated coronavirus in SARS patients. DNA and Cell Biology. 2005;8:521-527.

Franconi R, Illiano E, Paolini F, Massa S, Venuti A, Demurtas OC. Rapid and low cost tools derived from plants to face emerging/re-emerging infectious diseases and bioterrorism agents. In Defence against Bioterrorism, Dordrecht V. Radosavljevic, I. Banjari, and G. Belojevic, Eds., 2018// 2018: Springer Netherlands. 2018;123-139.

Dhouibi R, Affes H, Ben Salem M, Hammami S, Sahnoun Z, Zeghal KM, Ksouda K. Screening of pharmacological uses of Urtica dioica and others benefits. Progress in Biophysics and Molecular Biology. 2020;150:67-77.

Van der Meer FJUM, Haan CAM, Schuurman NMP, Haijema BJ, Verheije MH, Bosch BJ, Balzarini J, Egberink HF. The carbohydrate-binding plant lectins and the non peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. Journal of Antimicrobial Chemotherapy. 2007;4:741-749.

Mukherjee PK, Nema NK, Maity N, Mukherjee K, Harwansh RK. Phytochemical and therapeutic profile of Aloe vera. Journal of Natural Remedies. 2014;14(1):1-26.

Kahlon JB, Kemp MC, Carpenter RH, McAnalley BH, McDaniel HR, Shannon WM. Inhibition of AIDS virus replication by acemannan in vitro. Mol Biother. 1991;3:127-35.

Bernard SG, Hughes BG, Sidwell RW. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral. Res. 1992;35:2463-2466.

Semple SJ, Pyke SM, Reynolds GD, Flower RL. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. 2001;49:169-178.

Bhalsinge RR, Rajbhoj SR, Limaye MV, Vaidya MU, Rane PS, Tilak AV. Anti-inflammatory and immunomodulatory activity of ethanol extract of Aloe vera gel. IJPSR. 2017;9(2):832-835.

te velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. Plos Pathogens. 2010;6(11):1-10.

Khatune NA, Islam ME, Haque ME, Khondkar P, Rahman MM. Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia. 2004;75:228–30.

Xu Q, Pan Y, Yi LT. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol Pharm Bull. 2008;31:1109–14.

Choi YH, Yon GH, Hong KS, Park WH, Kim YH, Ry SH, Choi CH, Cha MR, Kim YS. In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia. Planta Med. 2008;74:1405–8.

Sun NJ, Woo SH, Cassady JM, Snapka RM. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. 1998;61:362–6.

Oh KY, Lee JH, Curtis-Long MJ, Kim JY, Ryu HW, Jeong TS, Park KH, Kim JY. Glycosidase inhibitory phenolic compounds from the seed of Psoralea corylifolia. Food Chem. 2010;121:940–5.

Katsuki T, Luscombe D. Torreya nucifera. The IUCN Red List of Threatened Species. IUCN. 2013;298-7599.

Kao RY, Tsui WHW, Lee TSW, Tanner JA, Watt RM, Huang JD, Hu L, Chen G, Chen Z. Zhang L, He T, Chan KH, Tse H, To APC, Ng LWY, Wong BCW, Tsoi HW, Yang D, Ho DD, Yuen KY. Chemical Biology; 2004.

Yeun KY. Baicalin as a treatment for SARS infection. Ed: Google Patents; 2009.

Thuy BTP, Tran TAM, Nguyen TTH, Le TH, Tran TH, Huynh TPL, Nguyen TT, Tran TVA, Phan TQ, Pham VT, Nguyen VH, Duong TQ, Nguyen TT, Vo TT, Lam KH, Nguyen TA. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega; 2020.

Zhang CH, Wang YF, Liu XJ, Lu JH, Qian CW, Wan ZY. Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chin Med; 2005.

Kim DE, Min JS, Jang MS, Lee JY, Shin YS, Park CM. Natural Bis benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules. 2019;9(11):696.

St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: Genetic stability and neuroinvasion. Journal of Virology. 2004;16:8824–34.

Ramos-Tovar E, Muriel P. Chapter 9 - phytotherapy for the liver. In Dietary Interventions in Liver Disease, R. R. Watson and V. R. Preedy Eds.: Academic Press. 2019;101-121.

Pilcher H. Liquorice may tackle SARS. Nature. 2003;030-609.

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr, HW. Glycyrrhizin, an active component of liquorice roots and replication of SARS associated coronavirus. The Lancet. 2003;361(9374): 2045-2046.

Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D. A history of the therapeutic use of liquorice in Europe. Journal of Ethnopharmacology. Antiviral effects of Glycyrrhiza species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2008;22(2):141-148.

Pu J, He L, Wu S, Zhang P, Huang X. Anti-virus research of triterpenoids in licorice. Bing du Xue Bao. Chinese Journal of Virology. 2013;6:673-679.

Chen H, Du Q. Potential natural compounds for preventing 2019-nCoV infection. Preprints; 2020.

Ewing S. The great Alaska nature factbook: A guide to the state's remarkable animals, Plants and Natural Features (2nd Ed.). Graphic Arts Books. 2012;106:142-80.

Parchen AN, Diwan AD, Chandra SR. Flavonoids: An overview. Journal of Nutrition Science. 2016;5-47.

Shimizu JF, Lima CS, Pereira CM, Bittar C, Batista MN, Nazaré AC, Polaquini CR, Zothner C, Harris M, Rahal P. Flavonoids from Pterogyne nitens inhibit hepatitis C virus entry. Science. Representative. 2017;7:16-127.

Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS‐CoV 3CL protease by flavonoids. Enzyme Inhib Med Chem. 2020;35:145-151.

Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chemical Biology Drug Description. 2019;94:2023-2030.

Yoresi M, Rezazadeh A, Mousai MM. The considerations and the required steps for production of the plant seeds vaccines with focus on the oral delivery. Plant Cell Biotechnology and Molecular Biology. 2020;36-51.